学者
您现在所在的位置: 首页- 学者- 团队介绍

一、师资队伍

图片1.png

王俊升, 教授/博导,2016年国家级青年人才项目获得者

1.教授,    2016.9-今,JS金沙,ICME/智能制造

2.合金设计专家, 2014.1-2016.9,美国凯撒铝业公司高级工程研究院,航空航天高强轻质铝合金设计/集成计算材料工程

3. 研究员, 2009.1-2010.3,英国伦敦帝国理工大学材料系,集成计算材料工程/汽车铝合金制造技术

4.博士,  2005.9-2009.1,英国伦敦帝国理工JS金沙,材料系

5.硕士,  2002.9-2005.7,北京科技大学机械JS金沙,热能工程系

6.本科,  1998.9-2002.7,北京科技大学机械JS金沙,热能工程系

研究方向:

1.集成计算材料工程(ICME)

2.新合金(铝合金、镁合金等)设计

3.高活性金属材料增材制造技术

4.高模量铝锂合金结构功能一体化

5.高模量镁锂合金高通量制备技术

6.航空航天金属材料智能制造技术

7.轻质合金制造过程数字孪生模型

8.机器学习用于X射线CT特征分割

9.XCT三维数字重构图像量化分析

10.基于XCT的材料相基因原位观测

2_副本.png

二、团队简介

传统“材料、设计、工艺”三阶段脱节,以轻质合金为例,开发一种密度低、强度高、模量高的新材料,依赖大量成分、工艺正交实验,不但周期长,需10~20年,而且成本高,需要上亿元投入。团队长期从事新材料的成分设计和制造工艺开发,在开发基于“成分——工艺——组织——性能”相关性的多场耦合、多相、多尺度模拟全流程集成计算材料工程(ICME)工具方面,经验丰富。采用材料基因组新理念、新方法,运用集成计算材料工程(ICME)技术,打破了合金设计长期依赖于“炒菜式”的试错模式,实现了数字化研发新合金与新工艺。面向国家重大战略需求,锻炼学生解决“卡脖子”难题的能力,教授集成计算材料工程(ICME)新方法,加速先进金属材料的设计与航空发动机镍基单晶叶片高性能制造工艺开发,2019获北理工人才类表彰。在军科委基础加强、装发领域基金、两机专项、自然基金联合基金等国家项目资助下,完整培养5届研究生毕业,共带领60位学生:27位本科生毕设、16位博士生和17位硕士生,累计发表学术论文138篇、申请发明专利30项,平均每位硕士毕业生3篇、博士6篇,其中45篇领域顶刊,3篇封面,编写美国金属手册3章。大部分毕业生已在航空、航天、兵器、芯片等领域承担重要科研任务。

担任美国金属学会图书(ASM-Technical Book)编委、《北京理工大学学报(英文版)》编委、《航空制造技术》编委、《特种铸造及有色合金》编委、《材料热处理学报》青年编委等,主编《北京理工大学学报(英文版)》材料信息学专题、《航空制造技术》一体化成形专题、《材料热处理学报》航空轻质合金专题。担任中国有色金属学会“有色金属(国际)新材料科技创新大会”副秘书长、材料科学与工程学术委员会委员、第六、七届“材料基因工程高层次论坛”组委、中航工业航空制造研究院主办的轻质材料与轻量化制造技术国际会议组委。科研选题服务国家高端装备研制和重大工程需求,服务于军工单位,如52所、航天211厂、中船874厂。多次受邀参加国际会议和汽车、航空制造企业讲学,科研成果2013年在美国福特汽车公司150周年庆祝活动上以ICME荣获科技进步奖,2017年获得科技部创新中心北京赛区汽车轻量化最佳挑战者奖。

3_副本.png

4_副本.png

三、人才培养

2016年至今,共培养60名学生:16位博士和17位硕士研究生、27位本科毕业设计,平均每位硕士毕业生3篇、博士6篇SCI学术论文。2023年,已完整指导过5届研究生,多位获国家奖学金,3位获第二届中国创新挑战赛(北京)最佳挑战者奖励,2位获材料基因工程高层次论坛墙报一等奖,9位获中国材料大会邀请报告,5位获美国美国TMS、ICME年会特邀报告。大部分毕业生已在航空、航天、兵器、芯片等领域承担重要科研任务。承担了《材料加工原理》研究生全英文等教学任务。在航空航天铝合金材料成分、工艺、性能设计方面积累了丰富的经验。

2019-2023年毕业的研究生,分别受聘于航天科技一院、航天科工三院、中国兵器、航空制造院、紫光芯片、北京电控、华北理工大学、沈阳工业大学等单位。30余位本科、硕士、博士毕业生为大飞机、高超导弹、芯片等国家重大型号项目贡献了集成计算材料工程前沿领域的科技攻关能力。指导8位外国留学生,毕业后回到巴基斯坦等国,传承北理工的学以精工精神。

图片1_副本.png

2016-2019团队培养毕业的硕士、本科生

图片2_副本.png

2016-2019团队培养毕业的硕士、本科生就业情况

图片3_副本.png

2023团队培养毕业的博士、硕士、本科生

微信图片_20240108185838_副本.png

团队发表于SCI和中文核心的3篇封面文章

微信图片_20240108185855_副本.png

面向大飞机机身、火箭储箱、空间舱体和骨修复、固定植入用轻质材料

四、科研平台

集成计算工程实验室(ICME)现有硕士和博士研究生20余名,实验室已拥有各类全套材料研究测试设备,包括高性能计算机群工作站、纳米压痕测试仪、真空加压铸造机、电磁熔炼炉、气氛保护热处理炉、原位高温拉伸试验机、差热分析仪、光学显微镜、超声检测仪等设备,形成了一整套从材料制备到性能表征平台,从第一性原理计算软件VASP、分子动力学软件 LAMMPS、CA模型、到力学性能预测的硬件和软件支撑。

图片4_副本.png

北京理工大学微纳加工中心

图片5_副本.png

北京理工大学微纳加工中心X射线显微镜内部结构

图片6_副本.png

射线显微镜3D原位表征装置

五、代表性科研成果

团队长期从事集成计算材料工程(ICME)应用于轻质、高比强(刚)度、可绿色回收材料工艺一体化研制工作,突破了材料设计与成形工艺脱节的限制,实现了合金成分设计、成形控制、热处理一体化调控,发展了第一性原理指导成分设计、耦合热力学的动力学模型预测晶体微结构、多尺度预测数学模型,提出了基于异构晶体界面调控的新原理,为掌握一体化、协同、精确控制高品质、低成本、短流程、难制备高强轻质合金的绿色技术奠定了基础。

团队自2016年回国后在国自然面上项目(52073030)和区域联合(重点)基金(U20A20276)、军委科技委基础加强项目、科技部重点研发计划、中组部“国家人才青年项目”等多项国家项目支持下,针对如何调控高活性Li在液态、固态Al-Li/Mg-Li合金中的分布,从而提升模量;如何调控无法清除的[H]、Fe等有害冶金杂质成相结构,从而改善力学性能等超轻合金的关键科学问题,提出了面向“双碳”的热加工全流程集成仿真,针对含锂轻合金强韧性、组织调控,提出了高品质铸造、多级固溶、蠕变时效、异质形核新调控理论,从而解决了高性能轻合金的制备难,智能化不够、精细化控制不足、制备过程不绿色环保加工技术难题。聚焦于轻质合金智能制造,发表学术论文138篇,其中45篇为顶刊,3篇做为封面报道,包括Additive Manufacturing,Journal of Materials Science & Technology,Materials Science and Engineering A,Corrosion Science,Materials Characterization,Journal of Alloys and Compounds等国际期刊,申请发明专利30余项,获得授权20项。

[1] Xinghai Yang, Junsheng Wang *, Shuo Wang, Xingxing Li , Chengpeng Xue, Guangyuan Tian, Yuxuan Zhang, Yubin Ke, Zhenhua Xie,Quantifying the kinetics of δ? precipitates in a novel Al–Li–Cu–Mg alloy during two-step aging by small-angle neutron scattering, Materials Science & Engineering A, 872 (2023) 144963

[2] Guangyuan Tian, Junsheng Wang*, Chengpeng Xue, Xinghai Yang, Shuo Wang, Hui Su,Ultra-light Mg–Li alloy by design to achieve unprecedented high stiffness using the CALPHAD approach, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 81 (2023) 102556

[3] Xingxing Li, Xinghai Yang, Chengpeng Xue, Shuo Wang, Yuxuan Zhang, Bing Wang, Junsheng Wang*, Peter D. Lee,Predicting hydrogen microporosity in long solidification range ternary Al-Cu-Li alloys by coupling CALPHAD and cellular automata model, Computational Materials Science ,222 (2023) 112120

[4] Hui Su, Chi Zhang, Zhifei Yan, Ping Gao, Hong Guo, Guanchen Pan, and Junsheng Wang*,Numerical Simulation of Penetration Process of Depleted Uranium Alloy Based on an FEM-SPH Coupling Algorithm, Metals ,2023, 13, 79.https://doi.org/10.3390/met13010079

[5] Guanchen Pan, Hui Su, Xingxing Li, Junsheng Wang*, Coupled FEM-SPH simulation of the protective properties for metal/ceramic composite armor, International Journal of Lightweight Materials and Manufacture vol. 6 (2023) 543e551

[6] Yuxuan Zhang, Chengpeng Xue, Xinghai Yang, Xingxing Li, Shuo Wang, Quan Li, Bing Wang, Chi Zhang, Ruifeng Dou, Junsheng Wang*, Uncovering the effects of local pressure and cooling rates on porosity formation in AA2060 Al-Li alloy, Materials Today Communications, Volume 35,

[7] 2023, 106384, 2352-4928.

[8] Zhihao Yang, Chi Zhang, Shuo Wang, Chengpeng Xue, Guangyuan Tian, Hui Su, Chengming Yan, Zhifei Yan, Xiaoguang Liu and Junsheng Wang*,Towards quantum corrosion chemistry: screening perfect Cr, Ni sites and stoichiometry on top of an Fe(110) surface using DFT, RSC Advances ,2023, 13, 9945–9953 | 9945

[9] Zhengkai Wu, Shengchuan Wu,*, Weijian Qian, Haiou Zhang, Hongbin Zhu, Qingyong Chen, Zhenxian Zhang, Feng Guo, Junsheng Wang, Philip J. Withers,Structural integrity issues of additively manufactured railway components: Progress and challenges, Engineering Failure Analysis ,149 (2023) 107265

[10] Hui Su, Guangyuan Tian, Chi Zhang, Shuo Wang, Chengpeng Xue, Junsheng Wang,* , and Shaokang Guan, Quantitative evaluation of the short-range order strengthening effect on solid solution and GB strength of Mg–Y alloys by ab initio calculations, Journal of Materials Science, https://doi.org/10.1007/s10853-022-07823-3

[11] Chengpeng Xue, Yuxuan Zhang, Shuo Wang, Guangyuan Tian, Xinghai Yang, Yubin Ke, Zhenhua Xie, Junsheng Wang*,Achieving highest Young’s modulus in Al-Li by tracing the size and bonding evolution of Li-rich precipitates, Journal of Materials Science & Technology, 145 (2023) 125–135

[12] Hui Su, Guangyuan Tian, Yingju Li, Shuo Wang, Chengpeng Xue, Xiaohui Feng, Junsheng Wang*,Breaking the stiffness limit of Mg alloys by forming hard AlX particles and activating non-basal slip, Journal of Alloys and Compounds, 944 (2023) 169249

[13] Guangyuan Tian, Junsheng Wang,*, Shuo Wang, Chengpeng Xue, Xinghai Yang, Hui Su,An ultra-light Mg-Li alloy with exceptional elastic modulus, high strength, and corrosion-resistance, Materials Today Communications ,35 (2023) 105623

[14] Quan Li, Junsheng Wang*, Xinxiu Liu, Bing Wang, Minimizing detrimental impacts of β-Fe in Al-Mg-Si alloy by combining thermal and compression processes, Materials Characterization, 198 (2023) 112752

[15] Yapeng Tan, Guoqing Zhang, Weihong Lu , Bo Yang, Zhichao Tang, Zhengbing Xu * , Qinjia Zheng, Jianmin Zeng, Hongqun Tang, Junsheng Wang, Aoke Jiang and Lei Xiang,A New Porous Nozzle for Aluminum Melts Purification—Preparation and Mathematical–Physical Model, Metals, 2023, 13, 586. https://doi.org/10.3390/met13030586

[16] Zhang, Mingshan; Wang, Junsheng*; Wang, Bing; Xue, Chengpeng; Liu, Xiaoguang, Quantifying the effects of Sc and Ag on the microstructure and mechanical properties of Al–Cu alloys, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2022, 831: 0-142355.

[17] Bing Wang, Junsheng Wang*, Xinxiu Liu, Quan Li, Xiaoguang Liu,Uncovering the effects of neutralizing elements (Co, Mn and Cr) on the Fe-rich intermetallic formation in Al–Si–Cu alloys, Materials Science & Engineering A, 58 (2022) 144090

[18] 田光元, 严程铭, 杨智皓, 王俊升*, 耐腐蚀镁锂合金的腐蚀与防护及其性能研究进展, 中国腐蚀与防护学报, 2023

[19] 闫志飞, 田光元, 苏辉, 薛程鹏, 李全, 王硕, 严程铭, 杨智皓, 高平, 王俊升*, 高性能镁合金的研究进展, 铸造技术, Vol.44, No.02, Feb. 2023

[20] 严程铭, 薛程鹏, 田光元, 杨智皓, 刘晓光, 王俊升*, 金属光固化3D 打印研究现状, 工程科学学报, 2022: https://doi.org/10.13374/j.issn2095-9389.2022.10.25.004

[21] Shuo Wang, Chengpeng Xue, Xinghai Yang, Junsheng Wang*, Structural ordering governs stiffness and ductile-to-brittle transition in Al-Li alloys, Journal of Chemical Physics, 2022; https://doi.org/10.1063/5.0139566

[22] Bing Wang, Xinxiu Liu, Junsheng Wang*, Quan Li , Keli Liu, Mingshan Zhang,Uncovering the effects of Ce and superheat temperature on Fe-rich intermetallic and microporosity formation in aluminum alloy, Materials Characterization ,193 (2022) 112226

[23] Su, Hui; Zhang, Chi; Wang, Shuo; Tian, Guangyuan; Xue, Chenpeng; Wang, Junsheng*; Guan, Shaokang, Local atomic ordering strategy for high strength Mg alloy design by first-principle calculations, Journal of Alloys and Compounds, 2022, 907, 164491

[24] Wang, Shuo; Wang, Junsheng*; Zhang, Chi; Xue, Chengpeng, Continuous precipitate modes of the δ′-Al3Li phase in Al-Li alloys, Journal of Alloys and Compounds, 2022, 904(163800)

[25] Liu, Keli; Wang, Junsheng*; Wang, Bing; Mao, Pengcheng; Yang, Yanhong; Zhou, Yizhou, Quantifying the Influences of Carbides and Porosities on the Fatigue Crack Evolution of a Ni-Based Single-Crystal Superalloy using X-ray Tomography, Acta Metallurgica Sinica (English Letters), (2022) 35:133–145

[26] 王硕, 王俊升*,Al-Li合金中δ′/θ′/δ′复合沉淀相结构演化及稳定性的第一性原理探究, 金属学报, Vol.58 No.10 Oct. 2022 DOI: 10.11900/0412.1961.2021.00087

[27] Jianqiang Wu, Qilin Ruan, Simin Chen, Chuanchao Meng, Zhengbing Xu, Chunhua Wei, Hongqun Tang,* and Junsheng Wang*, Insights into Poisoning Mechanism of Zr by First Principle Calculation on Adhesion Work and Adsorption Energy between TiB2, Al3Ti, and Al3Zr, Metals, 2022, 12, 286. https://doi.org/10.3390/met12020286

[28] Chen Liu, Junsheng Wang*, Yongdong Xu*, Yu Fu, Jungang Han, Zhaoxun Cao, Xiaohu Chen, Shuming Zhao and Xiurong Zhu,In Vitro Corrosion Performance of As-Extruded Mg–Gd–Dy–Zr Alloys for Potential Orthopedic Applications, Metals, 2022, 12, 604. https://doi.org/10.3390/met12040604

[29] Xinxiu Liu, Bing Wang, Quan Li, Junsheng Wang* , Chi Zhang, Chengpeng Xue, Xinghai Yang, Guangyuan Tian, Xiaoguang Liu* and Hongqun Tang,Quantifying the Effects of Grain Refiners Al-Ti-B and La on the Microstructure and Mechanical Properties of W319 Alloy, Metals, 2022, 12, 627. https://doi.org/10.3390/met12040627

[30] Yu-xuan Zhang, Jun-sheng Wang*, Dong-xu Chen, Bing Wang, Chi Zhang, and Zheng-an Wang,Effects of cooling rates on microporosity in DC casting Al-Li alloy, China Foundry, Vol. 19 No. 2 March 2022

[31] Bing Wang, Xinxiu Liu, Junsheng Wang, Quan Li, Keli Liu, Mingshan Zhang, Uncovering the effects of Ce and superheat temperature on Fe-rich intermetallic and microporosity formation in aluminum alloy, Materials Characterization, DOI: https://doi.org/10.1016/j.matchar.2022.112226

[32] Keli Liu, Chi Zhang, Junsheng Wang, Chengpeng Xue, Bing Wang, Mingshan Zhang, Yanhong Yang & Yizhou Zhou, Quantifying the Effects of Carbides and Pores on Fatigue Damages of Ni-Based Single Crystal Superalloys at Elevated Temperature Using X-Ray CT Scans, Journal of Nondestructive Evaluation ,2022, vol. 41, Article number: 47

[33] Chi Zhang, Xin Li, Keli Liu, Guangyuan Tian, Shuo Wang, Junsheng Wang;, In Situ Characterization of Corrosion Processes of As-Extruded Pure Magnesium Using X-Ray Computed Microtomography, CORROSION,1 April 2022; 78 (4): 350–358. doi: https://doi.org/10.5006/3934

[34] Xinxiu Liu, Bing Wang, Quan Li, Junsheng Wang*, Chengpeng Xue, Xinghai Yang, Guangyuan Tian, Xiaoxue Chang, Xiaoguang Liu,Quantifying the effects of grain refiners (AlTiB and Y) on microstructure and properties in W319 alloys, Materials Today Communications, 33 (2022) 104671

[35] 王硕, 张弛, 王俊升*,铝锂合金纳米析出相结构与性能综述, 航空制造技术, 2021, 64(9): 68–76, 92

[36] 王郁, 王俊升*, 薛程鹏, 王硕, 陈东旭, 张弛, 微合金化对铝合金高温析出相影响的研究进展, 航空制造技术, 2021, 64(15): 68–77, 85.

[37] 李志强, 王俊升*, 第二相粒子对铝合金再结晶的影响研究, 航空制造技术, 2021, 64(9): 93–101.

[38] Xue, Chengpeng; Zhang, Yuxuan; Mao, Pengcheng; Liu, Changmeng; Guo, Yueling; Qian, Feng; Zhang, Chi; Liu, Keli; Zhang, Mingshan; Tang, Shuiyuan; Wang, Junsheng*  Improving mechanical properties of wire arc additively manufactured AA2196 Al-Li alloy by controlling solidification defects, Additive Manufacturing, 2021, 43: 0-102019.

[39] Zhang, Chi; Liu, Chen; Li,Xin; Liu, Keli; Tian,Guangyuan; Wang, Junsheng*,Quantifying the influence of secondary phases on corrosion in multicomponent Mg alloys using X-ray computed Microtomography, Corrosion Science,2021, 195(110010): 1-14.

[40] Xue, Chengpeng; Wang, Yu; Wang, Junsheng*, Designing elastic modulus of Al3X precipitates in Al alloys by identifying effective atomic bonds and stabilizing coherent structures, Journal of Alloys and Compounds, 2021, 896(162619): 1-11.

[41] Zhang, Mingshan; Liu, Keli; Wang, Bing; Liang, Tingting; Han, Jiaqiang; Wang, Junsheng*, Accelerating pore nucleation and eutectic Si growth kinetics by increasing Cu and Sc for Al-Si-Mg alloys: In-situ observation, Journal of Alloys and Compounds, 2021, 869: 0-159173.

[42] Wang, Bing; Zhang, Mingshan; Wang, Junsheng*, Quantifying the effects of cooling rates and alloying additions on the microporosity formation in Al alloys, Materials Today Communications, 2021, 28: 0-102524.

[43] Li, Xin; Liu, Chen; Wang, Junsheng*; Zhang, Chi, Tailoring the strength and formability of Mg alloys through rare earth element additions (Gd and Dy) and dynamic recrystallizations, Materials Today Communications, 2021, 28: 0-102627.

[44] Zhang, Mingshan; Wang, Junsheng*; Wang, Bing; Xue, Chengpeng; Qian, Feng; Liu, Xiaoguang; Guan, Shaokang, Quantifying the effects of Sn on theta'-Al2Cu precipitation kinetics in Al-Cu alloys, Materials Science and Technology, 2021, 37(11): 979-992.

[45] Wang, Shuo; Zhang, Chi; Li, Xin; Wang, Junsheng*, Heterophase Interface Dominated Deformation and Mechanical Properties in Al-Cu-Li Alloys, Advanced Theory and Simulations, 2021, 4(6): 0-2100059.

[46] Wang, Shuo; Zhang, Chi; Li, Xin; Wang, Junsheng*, Uncovering the influence of Cu on the thickening and strength of the delta '/theta '/delta ' nano-composite precipitate in Al-Cu-Li alloys, Journal of Materials Science, 2021, 56(16): 10092-10107.

[47] Chen, Dongxu; Wang, Junsheng*; Zhang, Chi, Coupling phase-field model and CFD for hot cracking predictions of Al-Li alloys, Computational Materials Science, 2021, 192: 0-110361.

[48] Zhang, Mingshan; Liu, Keli; Han, Jiaqiang; Qian, Feng; Wang, Junsheng*; Guan, Shaokang,Investigating the role of Cu, Zr and V on the evolution of microstructure and properties of Al-Si-Mg cast alloys, Materials Today Communications, 2021, 26: 0-102055.

[49] Wang, Yu; Meng, Ya'nan; Wang, Junsheng*; Zhang, Chi; Huang, Houbing, Mechanical properties of defective L1(2)-Al3X (X = Sc, Lu) phase: A first-principles study, Journal of Rare Earths, 2021, 39(2): 217-224.

[50] Zheng, Y.; Lu, W.; Qian, F.; Jia, N.; Dou, Y.; He, X.; Yang, W.; Wang, J.; Xue, Y.; Jin, K.,Self-ion irradiation response of (CoCrFeNi)(94)Ti2Al4 alloy containing coherent nanoprecipitates, Journal of Nuclear Materials, 2021, 549: 0-152889.

[51] Guo, Yueling; Han, Qifei; Hu, Jinlong; Yang, Xinghai; Mao, Pengcheng; Wang, Junsheng; Sun, Shaobo; He, Zhi; Lu, Jiping; Liu, Changmeng,Comparative Study on Wire-Arc Additive Manufacturing and Conventional Casting of Al-Si Alloys: Porosity, Microstructure and Mechanical Property, Acta Metallurgica Sinica (English Letters), (2021)184

[52] Zhang, Chi, Li, Xin, Wang, Shuo, Wang, Junsheng*, Zhu, Shijie, Guan, Shaokang, Does Expanding or Contracting MgO Lattice Really Help with Corrosion Resistance of Mg Surface: Insights from Molecular Dynamics Simulations, ACS OMEGA, 2021,vol.6, 2, 1099-1107

[53] Yang, Chao, Huang, Houbing, Liu, Wenbo, Wang, Junsheng, Wang, Jing, Jafri, Hasnain Mehdi, Liu, Yu, Han, Guomin, Song, Haifeng, Chen, Long-Qing, Explicit Dynamics of Diffuse Interface in Phase-Field Model, ADVANCED THEORY AND SIMULATIONS, 2021,vol.4,1

[54] Yang, Chao, Wang, Jing, Wang, Junsheng, Liu, Yu, Han, Guomin, Song, Haifeng, Huang, Houbing, Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain, CHINESE PHYSICS B, 2021,vol.30,1

[55] Yang, Xinghai, Wang, Junsheng, Zhang, Mingshan, Zhang, Chi, Xue, Chengpeng, Guo, Yueling, Liu, Xiaoguang, Achieving high strength and ductility of Al-Cu-Li alloy via creep aging treatment with different pre-strain levels, MATERIALS TODAY COMMUNICATIONS, 2021, vol.29

[56] Zhang, Chi, Wang, Junsheng, Li, Xin, Wang, Shuo, Zhu, Shijie, Guan, Shaokang, Rapid screening alloying elements for improved corrosion resistance on the Mg(0001) surface using first principles calculations, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, vol.23, 47, 26887-26901

[57] Keli Liu, Junsheng Wang*, Yanhong Yang, Yizhou Zhou, Yuansheng Yang, Chunjie Cao,An integrated microporosity model of 3D X-ray micro-tomography and directional solidification simulations for Ni-based single crystal superalloys, Computational Materials Science, 188 (2021) 110172

[58] Keli Liu, Junsheng Wang?, Yanhong Yang, Yizhou Zhou,Effect of cooling rate on carbides in directionally solidified nickel-based single crystal superalloy: X-ray tomography and U-net CNN quantification, Journal of Alloys and Compounds, 883 (2021) 160723

[59] Liu, Keli; Wang, Junsheng*; Wang, Bing; Mao, Pengcheng; Yang, Yanhong; Zhou, Yizhou,In-situ X-ray tomography investigation of pore damage effects during a tensile test of a Ni-based single crystal superalloy, Materials Characterization, 2021, 177: 0-111180.

[60] 刘可立; 王俊升*; 郭跃岭; 杨彦红; 周亦胄; 杨院生, ,镍基单晶高温合金孔洞缺陷数值模拟与控制方法研究进展, 航空制造技术, 2020, (16): 75-85.

[61] 陈东旭, 王俊升*, 王郁, 张明山, 王兵, 张弛, 王硕, 韩加强, 铝合金半连续铸造过程中热裂模型综述, 航空制造技术, 2020, (22): 24-39.

[62] Li, Xin; Zhang, Chi; Wang, Junsheng*; Huang, Houbing; Wang, Shuo, Atomic-level insights into nano-salt droplets wetting on the MgO surface using molecular dynamics simulations, Corrosion Science, 2020, 167: 0-108549.

[63] Wang, Shuo; Zhang, Chi; Li, Xin; Huang, Houbing; Wang, Junsheng*, First-principle investigation on the interfacial structure evolution of the delta '/theta '/delta ' composite precipitates in Al-Cu-Li alloys, Journal of Materials Science & Technology, 2020, 58: 205-214.

[64] Qian, Feng; Zhao, Dongdong; Mortsell, Eva A.; Jin, Shenbao; Wang, Junsheng; Marioara, Calin D.; Andersen, Sigmund J.; Sha, Gang; Li, Yanjun, Enhanced nucleation and precipitation hardening in Al-Mg-Si(-Cu) alloys with minor Cd additions, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2020, 792: 0-139698.

[65] Li, Zhiqiang; Wang, Junsheng*; Huang, Houbing Influences of grain/particle interfacial energies on second-phase particle pinning grain coarsening of polycrystalline, Journal of Alloys and Compounds, 2020, 818: 0-152848.

[66] Wang Zhengzhi; Wang Kun; Liang Deshan; Yan Linhai; Ni Ke; Huang Houbing; Li Bei; Guo Zhiwei; Wang Junsheng; Ma Xingqiao; Tang Xuhai; Chen Long-Qing, Hybrid Magnetic Micropillar Arrays for Programmable Actuation, Advanced Materials, 2020, 32(25): 0-2001879.

[67] Wang, Junsheng; Han, Jiaqiang; Dou, Ruifeng; Chen, Dongxu; Zhang, Mingshan; Huang, Houbing, Rationalizing Al-Mg, Al-Mg-Si, and multicomponent aluminum alloy design with segregation susceptibility predictions, Materials Today Communications, 2020, 25: 0-101376.

[68] Jafri, Hasnain Mehdi; Huang, Houbing; Yang, Chao; Wang, Junsheng; Amirov, A. A.; Chen, Long-Qing; Nan, Ce-Wen,Domain wall tuned superconductivity in superconductor-ferromagnet bilayers, Journal of Physics D: Applied Physics, 2020, 53(37): 0-375001.

[69] Han, Jia-qiang; Wang, Jun-sheng*; Zhang, Ming-shan; Niu, Kang-min,Relationship between amounts of low-melting-point eutectics and hot tearing susceptibility of ternary Al-Cu-Mg alloys during solidification, Transactions of Nonferrous Metals Society of China, 2020, 30(9): 2311-2325.

[70] Chen, Dong-xu; Dou, Rui-feng; Han, Jia-qiang; Wang, Jun-sheng*,Prediction of hot tearing susceptibility of direct chill casting of AA6111 alloys via finite element simulations, Transactions of Nonferrous Metals Society of China, 2020, 30(12): 3161-3172.

[71] Li, Zhiqiang; Wang, Junsheng*; Huang, Houbing,Influences of particle fractions on second-phase particles pinning grain coarsening processes, Journal of Materials Science, 2020, 55(8): 3434-3449.

[72] Li, Zhuyan; Wang, Junsheng*; Xing, Hui; Jin, Ke; Huang, Houbing,Determining dendrite arm spacing in directional solidification using a fast Fourier transform method, Computational Materials Science, 2020, 173: 0-109463.

[73] Yang, Chao; Wang, Xitao; Wang, Junsheng; Huang, Houbing,Multiphase-field approach with parabolic approximation scheme, Computational Materials Science, 2020, 172: 0-109322.

[74] Mehdi Jafri, Hasnain; Wang, Jing; Yang, Chao; Wang, Jun-Sheng; Huang, Hou-Bing,Phase-field simulation of superconductor vortex clustering in the vicinity of ferromagnetic domain bifurcations, Chinese Physics B, 2020, 29(12): 0-127402.

[75] Yang, Chao; Wang, Xitao; Jafri, Hasnain Mehdi; Wang, Junsheng; Huang, Houbing,Fe-C peritectic solidification of polycrystalline ferrite by phase-field method, Computational Materials Science, 2020, 178: 0-109626.

[76] Gao Rong-Zhen; Wang Jing; Wang Jun-Sheng; Huang Hou-Bing, Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory, Acta Physica Sinica, 2020, 69(21): 0-217801.

[77] Liu Di; Wang Jing; Wang Jun-Sheng; Huang Hou-Bing,Phase field simulation of misfit strain manipulating domain structure and ferroelectric properties in PbZr(1-x)TixO3 thin films, Acta Physica Sinica, 2020, 69(12): 0-127801.

[78] Liang, Deshan; Cui, Xiao; Ma, Xingqiao; Shi, Xiaoming; Wang, Jing; Jafri, Hasnain Mehdi; Wang, Junsheng; Wang, Zhengzhi; Huang, Houbing,Theoretically optimized hybrid magnetic nanoparticle concentrations for functional gradient nanocomposites, AIP Advances, 2020, 10(10): 0-105209.

[79] Yang, Chao; Li, Shilei; Wang, Xitao; Wang, Junsheng; Huang, Houbing, Phase-field simulation of multi-phase interactions in Fe-C peritectic solidification, Computational Materials Science, 2020, 171: 0-109220.

[80] 邱义; 王俊升*,增材制造快速凝固相场模拟研究进展, 航空制造技术, 2020, (16): 50-58.  

[81] Wang, Junsheng*; Li, Xiaobo,Simultaneously improving strength and ductility of AZ91-type alloys with minor Gd addition, Journal of Alloys and Compounds, 2019, 803: 689-699.

[82] Li, Zhiqiang; Wang, Junsheng*; Huang, Houbing, Grain boundary curvature based 2D cellular automata simulation of grain coarsening, Journal of Alloys and Compounds, 2019, 791: 411-422.

[83] Sun, Xiaohui; Huang, Houbing; Wang, Junsheng; Wen, Yongqiang; Dang, Zhi Min, Strain-induced broadening temperature range of electrocaloric effects in ferroelectric superlattices, Journal of Alloys and Compounds, 2019, 777: 821-827.

[84] Zhao, Ru; Huang, Houbing; He, Wangqiang;Wang, Haoyu; Jafri, Hasnain Mehdi;Wang, Junsheng; Ma, Xingqiao,Tunable temperature dependence of electric-field-control multicaloric effects, Journal of Alloys and Compounds, 2019, 806: 1491-1496.

[85] Zhang, Chi; Li, Xin; Wang, Junsheng, Predicting the Effects of Temperature on the Water Wettability of the Mg/MgO Surface through Atomistic Simulations, Journal of Physical Chemistry C, 2019, 123(31): 18914-18923.

[86] Zhang, Mingshan; Wang, Junsheng*; Han, Jiaqiang; Sui, Huaiming; Huang, Houbing; Jin, Ke;Qian, Feng,Optimization of heat treatment process of Al-Mg-Si cast alloys with Zn additions by simulation and experimental investigations, Calphad:Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 67: 0-101684.

[87] Li, Zhiqiang; Wang, Junsheng*; Huang, Houbing, ,A new-curvature cellular automata model of austenite grain growth,Materials Research Express, 2019, 6(9): 0-0965b5.

[88] Yang, Chao; Zhu, Xiangyu; Wang, Xitao; Wang, Junsheng; Huang, Houbing,Phase-field model of graphene aerogel formation by ice template method, Applied Physics Letters, 2019, 115(11): 0-111901.

[89] Sun, Xiaohui; Huang, Houbing; Jafri, Hasnain Mehdi; Wang, Junsheng; Wen, Yongqiang; Dang, Zhi Min,Wide Electrocaloric Temperature Range Induced by Ferroelectric to Antiferroelectric Phase Transition, Applied Sciences-Basel, 2019, 9(8): 0-1672.

[90] Liu, Di; Zhao, Ru; Jafri, Hasnain Mehdi; Wang, Junsheng; Huang, Houbing,Phase-field simulations of surface charge-induced polarization switching, Applied Physics Letters, 2019, 114(11): 0-112903.

[91] Jia, Nannan; Li, Yunkai; Liu, Xuan; Zheng, Yi; Wang, Benpeng; Wang, Junsheng; Xue, Yunfei; Jin, Ke,Thermal Stability and Mechanical Properties of Low-Activation Single-Phase Ti-V-Ta Medium Entropy Alloys, JOM, 2019, 71(10): 3490-3498.

[92] Keli Liu; Zhuyan Li; Junsheng Wang*; Feng Qian; Ke Jin; HoubingHuang; Yanhong Yang; Yizhou Zhou; Yuansheng Yang, Optimizing process windows for minimizing the pore size of Ni-based single crystal superalloys, Materialia, 2019, 74(100508).

[93] Jiaqiang Han; Junsheng Wang*; Mingshan Zhang; Kangmin Niu, Susceptibility of lithium containing aluminum alloys to cracking during solidification, Materialia, 2019, 5(100203).

[94] 菅晓君, 张明山, 王俊升*, 热处理工艺对6061铝合金硬度和导电率的影响, 材料热处理学报, 2019, (01): 83-90.

[95] Junsheng Wang, ASM Handbook: Physical Metallurgy of Aluminum Alloys, ASM Handbook, 2018. Vol. 1B, 5450, A0006503

[96] Junsheng Wang, ASM Handbook:Aluminum Alloy Ingot Casting and Continuous Processes, ASM Handbook, 2018. 1G, 5450, A0006485

[97] Li Xiaobo; Yu Wenbo; Wang Junsheng*; Xiong Shoumei, Influence of melt flow in the gating system on microstructure and mechanical properties of high pressure die casting AZ91D magnesium alloy, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2018, 736: 219-227.

[98] Zheng, Jiayi; Wang, Song; Gao, Lihong; Ma, Zhuang; Wang, Fuchi; Wang, Junsheng, Theoretical and experimental studies of Ba2SmTaO6 on crystal structure, electronic structure and optical properties, Journal of Materials Chemistry C, 2018, 6(7): 1806-1814.

[99] Junsheng Wang, Andrew Horsfield, Udo Schwingenschl?g, and Peter D. Lee, Heterogeneous nucleation of solid Al from the melt by TiB2 and Al3Ti: An ab initio molecular dynamics study, PHYSICAL REVIEW B 82, 184203(2010)

[100] Junsheng Wang, Andrew Horsfield, Peter D. Lee, and Peter Brommer, Heterogeneous nucleation of solid Al from the melt by Al3Ti: Molecular dynamics simulations, PHYSICAL REVIEW B 82, 144203(2010)

[101] Junsheng Wang, Mei Li, John Allison, and Peter D. Lee, Multiscale modeling of the influence of Fe content in a Al–Si–Cu alloy on the size distribution of intermetallic phases and micropores, JOURNAL OF APPLIED PHYSICS 107, 061804(2010)

[102] Junsheng Wang, Peter D. Lee*, Richard W. Hamilton, Mei Li and John Allison, The kinetics of Fe-rich intermetallic formation in aluminium alloys: In situ observation, Scripta Materialia 60 (2009) 516–519

六、成果转化与社会服务

支撑了北京理工大学-广西壮族自治区战略合作、北京理工大学鲁南研究院与地方政府的合作,建立了产业化中试生产基地。与兵器52所、航天一院、航天十院、航空制造院、中国人民解放军联勤保障部队第906医院等建立良好合作关系。

图片7_副本.png

图片8.png

(撰稿人:王俊升;数据截止至:2023年12月)


【JS金沙】游戏有限公司