论文
相关成果发表SCI论文100余篇,引用10000余次,H因子为58,包括37篇ESI前1%高被引论文,发表在Nat. Commun., Sci. Adv., J. Am. Chem. Soc., Angew. Chem., Adv. Mater.等国际高水平期刊上。
论文详情参见:
https://www.webofscience.com/wos/author/rid/ABF-7594-2020
https://scholar.google.ru/citations?user=VcOvavIAAAAJ&hl=zh-CN
部分代表性工作如下:
[1] Q. Cheng, Z.-X. Chen, X.-Y. Li, L.-P. Hou, C.-X. Bi, X.-Q. Zhang, J.-Q. Huang, B.-Q. Li*, Constructing a 700 Wh kg?1-level rechargeable lithium–sulfur pouch cell, Journal of Energy Chemistry, 2023, 76, 181.
[2] Y.-W. Song, L. Shen, N. Yao, X.-Y. Li, C.-X. Bi, Z. Li, M.-Y. Zhou, X.-Q. Zhang, X. Chen, B.-Q. Li*, J.-Q. Huang, Q. Zhang*, Cationic lithium polysulfides in lithium–sulfur batteries, Chem, 2022, 8, 1, 3031 –3050.
[3] J. Wang, C.-X. Zhao, J.-N. Liu, Y.-W. Song, J.-Q. Huang, B.-Q. Li*, Dual-atom catalysts for oxygen electrocatalysis, Nano Energy, 2022, 107927.
[4] X.-Y. Li, S. Feng, C.-X. Zhao, Q. Cheng, Z.-X. Chen, S.-Y. Sun, X. Chen, X.-Q. Zhang, B.-Q. Li*, J.-Q. Huang, Q. Zhang*, Regulating lithium salt to inhibit surface gelation on an electrocatalyst for high-energy-density lithium–sulfur batteries, Journal of the American Chemical Society, 2022, 144, 32, 14638 –14646.
[5] Z.-X. Chen, M. Zhao, L.-P. Hou, X.-Q. Zhang, B.-Q. Li*, J.-Q. Huang*, Towards practical high-energy-density lithium–sulfur pouch cells: A review, Advanced Materials, 2022, 34, 2201555.
[6] C.-X. Zhao, J.-N. Liu, J. Wang, C. Wang, X. Guo, X.-Y. Li, X. Chen, L. Song, B.-Q. Li*, Q. Zhang*, A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis, Science Advances, 2022, 8, abn5091.
[7] J.-N. Liu, C.-X. Zhao, D. Ren, J. Wang, R. Zhang, S.-H. Wang, C. Zhao, B.-Q. Li*, Q. Zhang, Preconstructing asymmetric interface in air cathodes for high‐performance rechargeable Zn–air batteries, Advanced Materials, 2022, 34, 2109407.
[8] X.‐Y. Li, S. Feng, M. Zhao, C.‐X. Zhao, X. Chen, B.‐Q. Li*, J.‐Q. Huang, Q. Zhang*, Surface gelation on disulfide electrocatalysts in lithium–sulfur batteries, Angewandte Chemie International Edition, 2022, 61, e202114671.
[9] G. Ye, M. Zhao, L.-P. Hou, W.-J. Chen, X.-Q. Zhang, B.-Q. Li*, J.-Q. Huang, Evaluation on a 400 Wh kg?1 lithium–sulfur pouch cell, Journal of Energy Chemistry, 2022, 66, 24–29.
[10] C.-X. Zhao, X.-Y. Li, M. Zhao, Z.-X. Chen, Y.-W. Song, W.-J. Chen, J.-N. Liu, B. Wang, X.-Q. Zhang, C.-M. Chen, B.-Q. Li*, J.-Q. Huang, Q. Zhang*, Semi-immobilized molecular electrocatalysts for high-performance lithium–sulfur batteries, Journal of the American Chemical Society, 2021, 143, 19865–19872.
[11] C.-X. Zhao, J.-N. Liu, J. Wang, D. Ren, B.-Q. Li*, Q. Zhang*, Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts, Chemical Society Review, 2021, 50, 7745–7778.
[12] C.-X. Zhao, J.-N. Liu, J. Wang, D. Ren, J. Yu, X. Chen, B.-Q. Li*, Q. Zhang, A ΔE = 0.63 V bifunctional oxygen electrocatalyst enables high‐rate and long‐cycling zinc–air batteries, Advanced Materials, 2021, 33, 2008606.
[13] M. Zhao, Y.-Q. Peng, B.-Q. Li*, X.-Q. Zhang, J.-Q. Huang*, Regulation of carbon distribution to construct high-sulfur-content cathode in lithium–sulfur batteries, Journal of Energy Chemistry, 2021, 56, 203–208.
[14] J. Xie, Y.‐W. Song, B.‐Q. Li*, H.‐J. Peng*, J.‐Q. Huang, Q. Zhang*, Direct intermediate regulation enabled by sulfur containers in working lithium–sulfur batteries, Angewandte Chemie International Edition, 2020, 59, 22150–22155.