论文
累计发表60余篇,其中一作/通讯20篇。部分代表作:
1.WAN D, DENG Y, MELING J I H, et al. Hydrogen-enhanced fatigue crack growth in a single-edge notched tensile specimen under in-situ hydrogen charging inside an environmental scanning electron microscope [J]. Acta Mater, 2019, 170: 87-99.
2.WAN D, DENG Y, BARNOUSH A. Hydrogen embrittlement effect observed by in-situ hydrogen plasma for charging on a ferritic alloy [J]. Scripta Mater, 2018, 151: 24-7.
3.WAN D, ALVARO A, OLDEN V, et al. Hydrogen-enhanced fatigue crack growth behaviors in a ferritic Fe-3wt%Si steel studied by fractography and dislocation structure analysis [J]. Int J Hydrog Energy, 2019, 44(10): 5030-42.
4.WAN D, BARNOUSH A. Plasticity in cryogenic brittle fracture of ferritic steels: Dislocation versus twinning [J]. Mater Sci Eng: A, 2019, 744: 335-9.
5.WAN D, MA Y, SUN B H, et al. Evaluation of hydrogen effect on the fatigue crack growth behavior of medium-Mn steels via in-situ hydrogen plasma charging in an environmental scanning electron microscope [J]. J Mater Sci Technol, 2021, 85: 30-43.
6.WAN D, GUAN S, WANG D, et al. Hydrogen embrittlement of additively manufactured AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Corros Sci, 2022, 195: 110007.
7.WAN D, HAGEN A B, VIESPOLI L M, et al. In-situ tensile and fatigue behavior of electrical grade Cu alloy for subsea cables [J]. Mater Sci Eng: A, 2022, 835: 142654.
8.CHENG B, LI Y, LI X, et al. Solid-State Hydrogen Storage Properties of Ti–V–Nb–Cr High-Entropy Alloys and the Associated Effects of Transitional Metals (M?=?Mn, Fe, Ni) [J]. Acta Metall Sin (Engl Lett), 2023, 36(7): 1113-22.
9.KONG L, CHENG B, WAN D, et al. A review on BCC-structured high-entropy alloys for hydrogen storage [J]. Front Mater, 2023, 10: 1135864.
10.CHENG B, KONG L, CAI H, et al. Pushing the Boundaries of solid-state hydrogen storage: A Refined study on TiVNbCrMo high-entropy alloys [J]. Int J Hydrog Energy, 2024, 60: 282-92.
11.CHENG B, KONG L, CAI H, et al. Exploring microstructure variations and hydrogen storage characteristics in TiVNbCrNi high-entropy alloys with different Ni incorporation [J]. Int J Hydrog Energy, 2024, 72: 29-40.
12.SUN B H, LU W J, GAULT B, et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels [J]. Nat Mater, 2021, 20(12): 1629.
13.GUAN S, SOLBERG K, WAN D, et al. Formation of fully equiaxed grain microstructure in additively manufactured AlCoCrFeNiTi0.5 high entropy alloy [J]. Materials & Design, 2019, 184: 108202.
14.RONG X D, ZHAO D D, CHEN X F, et al. Towards the work hardening and strain delocalization achieved via in-situ intragranular reinforcement in Al-CuO composite [J]. Acta Mater, 2023, 256: 119110.
15.WANG D, LU X, WAN D, et al. In-situ observation of martensitic transformation in an interstitial metastable high-entropy alloy during cathodic hydrogen charging [J]. Scripta Mater, 2019, 173: 56-60.
GUAN S, WAN D, CHEN S H, et al. Revealing thermal behavior, cracking behavior, phase and microstructure formation of a ternary equiatomic alloy additively manufactured using directed energy deposition [J]. Additive Manufacturing, 2023, 78: 103897.